COMPOSITION OPERATORS FROM HARDY SPACES INTO α-BLOCH SPACES ON THE POLYDISK

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compact Composition Operators between Bloch Type Spaces in the Polydisk

and Applied Analysis 3 The following lemma is the crucial criterion for the compactness of Cφ, whose proof is an easy modification of the proof of Proposition 3.11 in 1 . Lemma 2.4. Assume that φ is a holomorphic self-map of D. Then Cφ : Bp → Bq is compact if and only if Cφ is bounded and for any bounded sequence {fm}m∈N in Bp which converges to zero uniformly on compact subsets of D, we have ∥...

متن کامل

Weighted composition operators from Bergman-type spaces into Bloch spaces

Let D be the open unit disk in the complex plane C. Denote by H(D) the class of all functions analytic on D. An analytic self-map φ : D → D induces the composition operator Cφ on H(D), defined by Cφ ( f ) = f (φ(z)) for f analytic on D. It is a well-known consequence of Littlewood’s subordination principle that the composition operator Cφ is bounded on the classical Hardy and Bergman spaces (se...

متن کامل

Weighted Composition Operators between different Bloch-type Spaces in Polydisk

Let φ(z) = (φ 1 (z),. .. , φ n (z)) be a holomorphic self-map of U n and ψ(z) a holomorphic function on U n , where U n is the unit polydisk of C n. Let p ≥ 0, q ≥ 0, this paper gives some necessary and sufficient conditions for the weighted composition operator W ψ,φ induced by ψ and φ to be bounded and compact between p-Bloch space B p (U n) and q-Bloch space B q (U n).

متن کامل

Composition Operators between Generally Weighted Bloch Spaces of Polydisk

Let φ be a holomorphic self-map of the open unit polydisk U in C and p, q > 0. In this paper, the generally weighted Bloch spaces B log(U ) are introduced, and the boundedness and compactness of composition operator Cφ from B p log(U ) to B log(U ) are investigated.

متن کامل

Composition Operators from the Bloch Space into the Spaces Qt

Suppose that ϕ(z) is an analytic self-map of the unit disk ∆. We consider the boundedness of the composition operator C ϕ from Bloch space Ꮾ into the spaces Q T (Q T ,0) defined by a nonnegative, nondecreasing function T (r) on 0 ≤ r < ∞. 1. Introduction. Let ∆ = {z : |z| < 1} be the unit disk of complex plane C and let H(∆) be the space of all analytic functions in ∆. For a ∈ ∆, Green's functi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications of the Korean Mathematical Society

سال: 2005

ISSN: 1225-1763

DOI: 10.4134/ckms.2005.20.4.703